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In this paper, the lattice Boltzmann equation is directly derived from the Boltzmann equation. It is shown
that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation. Various approxi-
mations for the discretization of the Boltzmann equation in both time and phase space are discussed in detail.
A general procedure to derive the lattice Boltzmann model from the continuous Boltzmann equation is dem-
onstrated explicitly. The lattice Boltzmann models derived include the two-dimensional 6-bit, 7-bit, and 9-bit,
and three-dimensional 27-bit mode[$1063-651X97)12512-0

PACS numbgs): 47.10+g, 47.11+j, 05.20.Dd

[. INTRODUCTION The lack of a thorough understanding of the LBE method has
some immediate implications. For instance, the LBE method
In the last few years, we have witnessed a rapid develophas not been very successful in simulating thermohydrody-
ment of the method known as the lattice Boltzmann equatiomamic system$19—22, nor has the LBE method been able
(LBE) [1—6]. Although only in its infancy, the LBE method to be implemented on arbitrary mesh grif55,23], even
has demonstrated its ability to simulate hydrodynamic systhough considerable effort has been applied in these direc-
tems[1-5], magnetohydrodynamic systerfig, multiphase tions. As we have shqwn recentlﬁ24—2ﬂ, substantial
and multicomponent fluidgs] including suspensiorf®] and ~ Progress can be .made in the aforemen_tloned. areas once a
emulsions[10], chemical-reactive flowg11], and multi- better understanding qf th_e LBE metho_d is attained. Further-
component flow through porous mediz2]. Together with ~ MOre: through the derivation we can directly show the con-
modern computers of massively parallel processors, the Lg@ection b_etween the LBE method and other newly developed
method has become a powerful computational method fopas k'?}?t'c method527—.”33.h hat the latti |
studying various complex systems. The obvious advantages In this paper we will show that the lattice Boltzmann

of the LBE method are the parallelism of the method, theequatlon can be directly derived from the continuous Boltz-

implicity of th ; d th bility of i mann equation discretized in some special manner in both
simplicity of the programming, and the capability of INCOr- ;o gnq phase space. Our analysis shows that theoretically

porating model interactions. However, a rigorous frameworkpe |attice Boltzmann equation is independent of the lattice-
of the LBE method is still lacking in spite of the great inter- gas automata. The lattice Boltzmann equation is a finite-
est in the method. difference form of the continuous Boltzmann equation. We
Historically, the models of the lattice Boltzmann equation provide a detailed account of an priori derivation of the
directly evolve from the models of the lattice-gas automatgattice Boltzmann equation from its continuous counter-
(LGA) [13]. While the LGA models are Boolean ones, the part—the continuous Boltzmann equation. A general proce-
LBE models are indeed the floating-number counterpart oflure to derive lattice Boltzmann models from the continuous
the corresponding LGA models—a particle in the LGA Boltzmann equation is established. A number of LBE models
model(represented by a Boolean numpisrreplaced by the in both two- and three-dimension&D, 3D) space are de-
single-particle distribution functiorfrepresented by a real rived to illustrate the procedure. The kinetic-model equation
numbej. Even though the LBE models appear to be rathetused in this paper is the BGK equation with a single relax-
different from their LGA counterparts because variousation time[15—17. Although the BGK equation has its in-
approximations, such as the linearization of the collision opherent limitations and shortcomings, such as fixed Prandtl
erator[2] and the Bhatnagar-Gross-KrodBGK) [15-17] number, the equation can be generalized to remedy the short-
approximation[ 3], have been applied, the theoretical frame-comings [34]. Therefore, it is sufficient to use the BGK
work of the LBE method nevertheless rests upon theequation for the purpose of studying hydrodynamics of
Chapman-Enskog analysis of the LGA methd#]. Al- simple fluids.
though the connection between the LBE models and the con- This paper is organized as follows. In Sec. Il we discuss
tinuous Boltzmann equation are discussed in various placebe discretization of time for the Boltzmann BGK equation.
[18,19, so far there exists no rigorous result in this direction.In Sec. Ill we discuss the low Mach numb@mall velocity
expansion and the discretization of the phase space. In Sec.
IV we derive the lattice Boltzmann 6-bit, 7-bit, and 9-bit
*Electronic address: xyh@t10.lanl.gov models in two-dimensional space and the 27-bit model in
"Electronic address: luo@icase.edu three-dimensional space. Section V concludes the paper.
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Il. DISCRETIZATION OF THE BOLTZMANN EQUATION

In the following analysis, we shall use the Boltzmann
equation with the BGK, or single-relaxation-time, approxi-
mation[15-17:

ot 1
S TEVi=— 1 (i-0), M

wheref=1f(x, &) is the single-particle distribution function,
& is the microscopic velocity) is the relaxation time due to
collision, andg is the Boltzmann-Maxwellian distribution
function:

whereR is the ideal gas constari), is the dimension of the
space, ang, u, andT are the macroscopic density of mass,
velocity, and temperature, respectively. The macroscopi
variables,p, u, and T are the(microscopic velocity mo-
ments of the distribution functiorf,

p= | tae= [ gag

pu= [ #tde= | zqas

(£-u)?

RT @)

—_ p —
g= (277RT)D72 eXF{

(3a

(3b)

1 2 1 2
pe=3 | (Ewrroe=; [ (v @
The energy can also be written in terms of temperaiure

Do Do
e=—RT= 7

2 NAkBTy

4)

whereDg, N4, andkg are the number of degrees of freedom

of a particle, Avogadro’s number, and the Boltzmann con-

stant, respectively. In Eq$3), an assumption of Chapman-
Enskog[16] has been applied:

J h(f)f(X,ét)df:J h(§g(x,&1)d¢, )

whereh(¢§) is a linear combination of collisional invariants
(conserved quantiti¢s

h(§)=A+B-£+Cé- & (6)

In the above equatio® andC are arbitrary constants, afd
is an arbitrary constant vector.

A. Discretization of time

Equation(1) can be formally rewritten in the form of an
ordinary differential equation:

df 1
dt X\

1

f=x9y (7)

where
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= ev
aa®

is the time derivative along the characteristic lige The
above equation can be formally integrated over a time step of
o

f(x+ &5 §t+5):ie*5tmf5tet"A (x+ &', &t+t)dt’
116 t N 0 g 16y

+e M (X, E1). (8)

Assuming thats; is small enough ang is smooth enough
locally, the following approximation can be made:

5

!

+ 5 g(x+&6;,&t+6)
t

g(x+ &' Et+t')=

)g(X,f,t)

c

+0(8)), 0O=<t'<s,.

(€)

The leading terms neglected in the above approximation are
of the order ofO(6t2). With this approximation, Eq8) be-
comes

f(x+ €8, &+ 8) — F(X &)
=(e M =Df(x,ED) - g(x,E)]

)
+| 1+ < (e” %M —1)
S

X[9(x+ &6, &1+ 8) —g(x, &) ].
BN

(10

If we expande in its Taylor expansion and, further,
neglect the terms of ord@(&f) or smaller on the right-hand
side of Eq.(10), then Eq.(10) becomes

1
- ; [f(X,g,t)_g(X,g,t)],
(11)

f(x+&6;,&t+ 6) —f(X, &)=

where 7=\/§; is the dimensionless relaxation tinge the
unit of 8,). Therefore, Eq(11) is accurate to the first order in
6;. Equation(1l) is the evolution equation of the distribu-
tion functionf with discrete time.

Althoughg is written as an explicit function df, the time
dependence df lies solely in the hydrodynamic variables
u, and T (the Chapman-Enskog ansafd6]), that is,
a(x, &) =9g(x,¢,p,u,T). Therefore, one must first compute
p, U, andT before constructing the equilibrium distribution
function,g. Thus, the calculation gf, u, andT becomes one
of the most crucial steps in discretizing the Boltzmann equa-
tion.

B. Calculation of the hydrodynamic moments

In order to numerically evaluate the hydrodynamic mo-
ments of Eq.(3), appropriate discretization in momentum
space£ must be accomplished. With appropriate discretiza-
tion, integration in momentum spadeith weight function
g) can be approximated by quadrature up to a certain degree
of accuracy, that is,



f¢(§)9(x,§,t)d§=§ W h(£)9(x, €1, (12

wherey(£) is a polynomial of§, W, is the weight coefficient
of the quadrature, and, is the discrete velocity set or the

abscissas of the quadrature. Accordingly, the hydrodynami

moments of Eqs(3) can be computed by

p=2 fo=2 9, (139

pu=2> £,f,=> £.94, (13b

1 1
pe=3 2 (£~ W, =5 2 (-0, (130

where

fo=f, (X )=W,f(x,&,.1), (143

Ja=0a(X)=W,g(X, &, ,1). (14b
It should also be noted théy, (or g,) has the unit ofd& (or
gdé).

Ill. DERIVATION OF THE LATTICE BOLTZMANN
EQUATION AND ITS EQUILIBRIUM DISTRIBUTION
FUNCTION

The lattice Boltzmann equation has the following ingredi-
ents:(1) an evolution equation, in the form of E¢L1) with
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With the equilibrium distribution functioryg of the above
form, Eq. (11) bears a strong resemblance to the lattice
Boltzmann equation, and what remains to be accomplished is
the discretization of phase space. For convenience, the fol-
lowing notation for the equilibrium distribution function with
Euncated small velocity expansion shall be used in what fol-
ows:

f<e@=(2%nm exp — £/2RT)
(£u)  (£u? WP
X[” RT " 2(RDZ 2r7] 19

Although f(¢9 only retains the terms up ©(u?), it is trivial
to maintain high-order terms af in the above expansion if
necessary.

B. Discretization of phase space

There are two considerations in the discretization of phase
space. First of all, the discretization of momentum space is
coupled to that of configuration space such that a lattice
structure is obtained. This is a special characteristic of the
lattice Boltzmann equation. Second, the quadrature must be
accurate enough so that not only the conservation constraints
of Eq. (13) are preserved exactly, but also the necessary sym-
metries required by the Navier-Stokes equations are retained.

In deriving the Navier-Stokes equations from the Boltz-
mann equation via the Chapman-Enskog analy$&17],
the first two order approximations of the distribution func-
tion (i.e., f©®¥ andf)) must be considered. Therefore, given
the equilibrium distribution functionf®® of Eq. (16), the
quadrature used to evaluate the hydrodynamic moments must

discretized time and phase space of which configuratiof€ able to compute the following moments with respect to
space is of a lattice structure and momentum space is ré{*? exactly:

duced to a small set of discrete momen(id); conservation
constraints in the form of Eq13); (3) a proper equilibrium

distribution function which leads to the Navier-Stokes equa-

tions. In what follows, the low Mach number expansion is
first applied to the Boltzmann-Maxwellian distribution func-

tion. Then quadrature to approximate the integration in the

momentum spacg is discussed in detail for a variety of

ture, the lattice structure, and the equilibrium distribution
function of the LBE are constructed.

A. Low-Mach-number approximation

In the lattice Boltzmann equation, the equilibrium distri-

bution function is obtained by a truncated small velocity ex-

pansion (or low-Mach-number approximatipn[14]. The
same can be done here:

9= ﬁ’? exp(— £/2RT)exp{ (£ u)/RT—u?/2RT}

= ﬁ? eX[i - §2/2RT)

2

(&) (&u)?

>< —
Y RT T2RTZ 2RT

+0(ud).

(19

p- 11§i ’ glé] ' (173)
u &, &é&, &g, (170
T &§¢&, &igiék, &i&iéé, (179

LBE models in both 2D and 3D space. Through the quadra\-Nheregi is the component of in Cartesian coordinate@ie

have assumed that the particle only has the linear degree of
freedom, i.e.,Dyg=D.) Thus, to obtain the Navier-Stokes
equations, one must be able to evaluate the moments of 1,
£,...,& with respect to weight function exp@/2RT) ex-
actly, owing to the smalu expansion ofg. For isothermal
models, which are discussed in what follows, the moments
that are to be evaluated ared,,..,&.

Calculating the hydrodynamic momentsfét? is equiva-
lent to evaluating the following integral in general:

= [ woreode Lo [ woex-£rrm

2

(Ew? u

(§-u)
2(RT)2 2RT]d§’

X
RT

1+

(18

where(€) is a polynomial of£. The above integral has the
following structure:
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| e pnax 1= [ dmat& 0
which can be calculated numerically with Gaussian-type P e — £ m4n .
guadraturd 35]. Our objective is to use quadrature to evalu- T (V2RT) o Jo e ! cos"d sir’e

ate the hydrodynamic momenfg, u, and T, given by Eq.
(3)]. Given proper discretization of phase space, we can 2/(é-u)  Ae-u? u?

evaluate the above integral with desirable accuracy. In the Xy 1+ oRT tTRT T 2RT
meantime, the lattice Boltzmann equation with appropriate

]dagdg, (20)

equilibrium distribution function can also be derived. wheree= (cod, sind). To obtain the 7-bit lattice Boltzmann
equation on the triangular lattice space, the angular variable
IV. LATTICE BOLTZMANN MODELS IN TWO- 6 must be discretized evenly into six sections in the interval
AND THREE-DIMENSIONAL SPACE [0, 2m), that is, 0, = (a— 1) /3, for «={1,2,...,. With the

A. Two-dimensional 6-bit and 7-bit triangular lattice model discretization ofg, we have

. . . . 2

The.7-b|t model_ls constructed on a two-dmepsmrﬁ\l ( f cos"g siad e
=2) triangular lattice space. The triangular lattice has the 0

necessary rotational symmetry required by the hydrodynam-

ics [14]. The polar coordinates of space,(¢, 6), are used 6

ﬂ- .
—2 cod"g, sin"g,, (m+n) even

here. For the sake of simplicity but without losing generality, ={ 3=
assuming
0, (m+n) odd
Pnn(E=(V2RT)™ MM codg sino, (19 (21)
where = ¢/2RT, the integral in Eq(18) becomes for (m+n)=<5. Using the above result, we obtain
|
P m+n e . U2 (éa' u)2
3 (V2RT) Zl 0086, Si' 0,1 | 1= 5z lment —g7— Imena| s (m+n) even
| = 6 . (22
P ZRD™S. codg, sim, 2ot (m+n) odd
3 = a a \/ﬁ— m+n+1» ’
|
wheree,=(cosé,, sind,), and l,b=w,y 2=1/2, (24b)
+o0 2
Im= fo (ge™*)¢md¢g (23) ls=wy %=1, (240
is the mth moment with respect to the weight function of which, the solutions are
2
e ¢,
Since the 7-bit model only has two spe€ts.,n=2) and wo=1/4 (259
one of them is fixed at 0, it is clear that the abscissas of the '
quadrature to evaluatk,, should be{,=0 and /;=v"1,
where vy is a positive parameter to be adjusted later. The w,=1/4, (25b)
Radau-Gauss formul@5] is a natural choice to evaluate the
integrall ,,:
v=1N2. (250
n
— m el
Im=wolo +1-21 0t Therefore, we have
For the 7-bit modeln=1, and the integrals needed to be ln=1({M4+¢™), m=0,2,4. (26)

evaluated ar¢,, |,, andl,. [I; andl do not play any role
because of the symmetry of the integkalas shown in Eq.
(22).] Then, we have the following three equations: Note that the above quadrature figy is exactfor m=0, 2,
and 4. Consequently, the following equality is expected to be
lo=wo+ w1=1/2, (249  exact for (n+n)<5:
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p 6 u2 B. Two-dimensional 9-bit square lattice model
I= 12 V2R m+naz cos"d, Si”naa[ ( 1- 2RT) To recover the 9-bit LBE model on square lattice space,
the Cartesian coordinate system is used and, accordingly,
A b tt
X(§g1+n+§rln+n)+ Z(ea'u) (581+n+1+§21+n+1) lﬁ(g) can be setto
VZRT (/fmn(g):g(ng;y
(&,-u)? (2 g2y where £, and ¢, are thex andy components ofé. The
RT 0 1 integral of the moments, defined by E48), becomes

2

6
_P S G
=5 wm,n@o){ 1 2RT] 13 2, Ymn(Ea)

2
= [ ymat@10e=2 (2R mﬂ[(l—%)lmln

. . 2 2
X[H(éaw (&,-u) U)

RT ' 2(RD? 2RT|’ 2(Uyd 1+ Uyl e 1)
+
_ _ _ A V2RT
where| &)= V2RT{,=0 and&,=\2RT{,€,=2RTe,. It
becomes obvious that the equilibrium distribution function W21 ol 205U ] s 1l 1+ U2l s
for the 7-bit model is pmen o VF;“T . yoo ] (33
4(e,-u) 8(e,-u)?> 2u?
(ed) — @ i —
fl Wap[l-i- ) - mat (27 where
+
Whereae{O,l,Z,...,Q, |m: f_ e—52§md§' é«zgl PRT
Ox
c= E (28) s
t is themth order moment of the weight functice ¢* on the

real axis. Naturally, the third-order Hermite formui35] is
the optimal choice to evaluatg, for the purpose of deriving
the 9-bit LBE model:

is “the speed of light” in the systenfwhich is usually set to
be unity in the literaturg

(0, 0), a=0
“:[(cosﬂa, sind)c, 6,=(a—1)ml3, a=12,..6 3
(29) |m=j21 ;.
and
The three abscissas of the quadrature are

12, a=0
Wa=11/12. a=1.2...6. (30) L=—V312, =0, (3=132, (34)

Note that the substitution ®RT= c§202/4, wherec, is the and the corresponding weight coefficients are
sound speed of the system, has been made iz} and

RT=c2=c%4 is equivalent td|&,]|=c for a#0. The coef- _ _ _
ficient W, defined in Eq(14) is explicitly given by w1=\7l6, =273, wz=\7l6. (35)

Then, the integral of the moment in E@3) becomes

W, = (27RT)DPetalRTyy . (31)
Similarly, the equilibrium distribution function for the 6- o 3 (&0 (&;-u2 W
bit LBE model, which is a degenerate case of the 7-bit |=— E wijo;p(§ )1+ W 2 > ]
model, can be obtained easily by solving two equations for 7 /=1 RT 2(RT)®  2RT

one abscissa and the weight coefficient of the Hermite-Gauss (36)

formula [35] with modification for the integral on half real

axis[36]. The solutions are»; =3 and y=1. Then, we have where &,=(&, §)=V2RT({;, ;). Obviously, we can
identify the equilibrium distribution function with

P 1+ 2(€a 1) + Ao, U (32 2 2
6 (:2 C4 ? ! (eq)_m (gi,j’u) (§I,Ju) u
h= ”:“ RT " 2(rRTZ 2rT|" &7

fled=

where ae€{1,2,....6. The sound speed of the 6-bit LBE
model iscs=c/v2, andw,=3. Employing the notations of
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(Ol o)l a=0
e,={ (cod,, sind,)c, 0,=(a—1)7/2, a=1,23,4 (39
v2(cod,, sind,)c, 6,=(a—5)w/2+wl4, «=5,6,7,8

and C. Three-dimensional 27-bit square lattice model

The 27-bit LBE model in 3D square lattice space is a
straightforward extension of the 2D 9-bit model. The abscis-

419, i=j=2, a=0 ; : M
0] _ _ sasé;, as well as the corresponding weight coefficieats
=——=919, i=1j=2,..., a=1234 of the quadrature to evaluate the moments remain the same.
136, i=j=1,..., a=56,78, Therefore,
(39 , 3
and with the substitution oRT=c2=c?/3 (or |V2RTZ,| lzﬁii'j'kzl wj@joh(& ) k)
=/3RT=c), we obtain the equilibrium distribution function ,
of the 9-bit LBE model: (&ijkw) (&ijwe u
Xt TRT 2RTZ 2rT]T D
2 2 .
flea_yy ol g4 S8t S€WT SUTL o where &= (£&.£.6) = V2RT(Z ¢, ¢). With the fol-
@ @ c? 2¢ct 2c?|” lowing notations similar to the 9-bit model,
(01070)1 a:O
(+1,0,0)c, (0,+1,0)c, (0,0=1)c, a=12,.,6 4
€™ (+1,#1,0c, (+1,0+1)c, (0,x1,+1)c, a=78,..,18 (42)
(x1,x1*1)c, «=19,20,...,26
|
and complex fluids[27-33. All these methods are based upon
. the solution of the BGK equatiofi). In particular, these gas
Wa:_3J/2_ kinetic methods are basically a finite-volume solution of Eq.
77 (8) and they do not require discretization of the velocity
8127, i=j=k=2, a=0 spaceé. While the lattice Boltzmann equation is in the in-
o compressible limit due to the small-Mach-number expansion,
_ 2127, i=j=2,k=1,..., a=12,.6 the gas kinetic methods are particularly suitable for shock
1/54, i=j=1,k=2,..., «=7,8,..,18 capture.
1/216, i=j=k=1 0=19.20 .. 26 In conclusion, we have derived lattice Boltzmann models

from the Boltzmann BGK equation, which is completely in-
(43 dependent of lattice-gas automata. The derivation directly
] o o ) _ connects the lattice Boltzmann equation to the Boltzmann
we obtain the equilibrium distribution function of the 27-bit equation; thus, the framework of the lattice Boltzmann equa-

LBE model: tion can rest on that of the Boltzmann equation and the rig-
3(e,-u) 9(e,-u)® 3u? orous results of the Boltzmann equation can be extended to
fl9=w,pi 1+ 2t od 2 (44)  the lattice Boltzmann equation via this explicit connection.

Insight to improve the previous LBE models can also be
Note that thef *? of the 27-bit model is exactly the same as gained from the results obtained in this pafi4-24. Fur-
o thermore, the analysis here also points out the relationship

that of the 9-bit model except for the values of the coeffi-
. . .__between the LBE method and other newly developed gas
cientsw,. Also, the sound speed of the 27-bit model is Kinetic method$27-33,

identical to that of the 9-bit model because in both models
RT=c2=c%3.
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