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Theory of the lattice Boltzmann method: From the Boltzmann equation
to the lattice Boltzmann equation
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In this paper, the lattice Boltzmann equation is directly derived from the Boltzmann equation. It is shown
that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation. Various approxi-
mations for the discretization of the Boltzmann equation in both time and phase space are discussed in detail.
A general procedure to derive the lattice Boltzmann model from the continuous Boltzmann equation is dem-
onstrated explicitly. The lattice Boltzmann models derived include the two-dimensional 6-bit, 7-bit, and 9-bit,
and three-dimensional 27-bit models.@S1063-651X~97!12512-0#
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I. INTRODUCTION

In the last few years, we have witnessed a rapid deve
ment of the method known as the lattice Boltzmann equa
~LBE! @1–6#. Although only in its infancy, the LBE method
has demonstrated its ability to simulate hydrodynamic s
tems @1–5#, magnetohydrodynamic systems@7#, multiphase
and multicomponent fluids@8# including suspensions@9# and
emulsions @10#, chemical-reactive flows@11#, and multi-
component flow through porous media@12#. Together with
modern computers of massively parallel processors, the L
method has become a powerful computational method
studying various complex systems. The obvious advanta
of the LBE method are the parallelism of the method,
simplicity of the programming, and the capability of inco
porating model interactions. However, a rigorous framew
of the LBE method is still lacking in spite of the great inte
est in the method.

Historically, the models of the lattice Boltzmann equati
directly evolve from the models of the lattice-gas autom
~LGA! @13#. While the LGA models are Boolean ones, t
LBE models are indeed the floating-number counterpar
the corresponding LGA models—a particle in the LG
model~represented by a Boolean number! is replaced by the
single-particle distribution function~represented by a rea
number!. Even though the LBE models appear to be rat
different from their LGA counterparts because vario
approximations, such as the linearization of the collision
erator @2# and the Bhatnagar-Gross-Krook~BGK! @15–17#
approximation@3#, have been applied, the theoretical fram
work of the LBE method nevertheless rests upon
Chapman-Enskog analysis of the LGA method@14#. Al-
though the connection between the LBE models and the c
tinuous Boltzmann equation are discussed in various pla
@18,19#, so far there exists no rigorous result in this directio
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The lack of a thorough understanding of the LBE method
some immediate implications. For instance, the LBE meth
has not been very successful in simulating thermohydro
namic systems@19–22#, nor has the LBE method been ab
to be implemented on arbitrary mesh grids@5,23#, even
though considerable effort has been applied in these di
tions. As we have shown recently@24–26#, substantial
progress can be made in the aforementioned areas on
better understanding of the LBE method is attained. Furth
more, through the derivation we can directly show the co
nection between the LBE method and other newly develo
gas kinetic methods@27–33#.

In this paper we will show that the lattice Boltzman
equation can be directly derived from the continuous Bo
mann equation discretized in some special manner in b
time and phase space. Our analysis shows that theoreti
the lattice Boltzmann equation is independent of the latti
gas automata. The lattice Boltzmann equation is a fin
difference form of the continuous Boltzmann equation. W
provide a detailed account of ana priori derivation of the
lattice Boltzmann equation from its continuous count
part—the continuous Boltzmann equation. A general pro
dure to derive lattice Boltzmann models from the continuo
Boltzmann equation is established. A number of LBE mod
in both two- and three-dimensional~2D, 3D! space are de-
rived to illustrate the procedure. The kinetic-model equat
used in this paper is the BGK equation with a single rela
ation time@15–17#. Although the BGK equation has its in
herent limitations and shortcomings, such as fixed Pra
number, the equation can be generalized to remedy the s
comings @34#. Therefore, it is sufficient to use the BGK
equation for the purpose of studying hydrodynamics
simple fluids.

This paper is organized as follows. In Sec. II we discu
the discretization of time for the Boltzmann BGK equatio
In Sec. III we discuss the low Mach number~small velocity!
expansion and the discretization of the phase space. In
IV we derive the lattice Boltzmann 6-bit, 7-bit, and 9-b
models in two-dimensional space and the 27-bit mode
three-dimensional space. Section V concludes the paper
6811 © 1997 The American Physical Society
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II. DISCRETIZATION OF THE BOLTZMANN EQUATION

In the following analysis, we shall use the Boltzma
equation with the BGK, or single-relaxation-time, appro
mation @15–17#:

] f

]t
1j•¹ f 52

1

l
~ f 2g!, ~1!

wheref [ f (x,j,t) is the single-particle distribution function
j is the microscopic velocity,l is the relaxation time due to
collision, andg is the Boltzmann-Maxwellian distribution
function:

g[
r

~2pRT!D/2 expS 2
~j2u!2

2RT D , ~2!

whereR is the ideal gas constant,D is the dimension of the
space, andr, u, andT are the macroscopic density of mas
velocity, and temperature, respectively. The macrosco
variables,r, u, and T are the~microscopic velocity! mo-
ments of the distribution function,f :

r5E f dj5E gdj, ~3a!

ru5E jf dj5E jgdj, ~3b!

r«5
1

2 E ~j2u!2f dj5
1

2 E ~j2u!2gdj. ~3c!

The energy can also be written in terms of temperatureT:

«5
D0

2
RT5

D0

2
NAkBT, ~4!

whereD0 , NA , andkB are the number of degrees of freedo
of a particle, Avogadro’s number, and the Boltzmann co
stant, respectively. In Eqs.~3!, an assumption of Chapman
Enskog@16# has been applied:

E h~j! f ~x,j,t !dj5E h~j!g~x,j,t !dj, ~5!

whereh(j) is a linear combination of collisional invariant
~conserved quantities!

h~j!5A1B•j1Cj•j. ~6!

In the above equation,A andC are arbitrary constants, andB
is an arbitrary constant vector.

A. Discretization of time

Equation~1! can be formally rewritten in the form of a
ordinary differential equation:

d f

dt
1

1

l
f 5

1

l
g, ~7!

where
,
ic

-

d

dt
[

]

]t
1j•“

is the time derivative along the characteristic linej. The
above equation can be formally integrated over a time ste
d t :

f ~x1jd t ,j,t1d t!5
1

l
e2d t /lE

0

d t
et8/lg~x1jt8,j,t1t8!dt8

1e2d t /l f ~x,j,t !. ~8!

Assuming thatd t is small enough andg is smooth enough
locally, the following approximation can be made:

g~x1jt8,j,t1t8!5S 12
t8

d t
Dg~x,j,t !

1
t8

d t
g~x1jd t ,j,t1d t!

1O~d t
2!, 0<t8<d t . ~9!

The leading terms neglected in the above approximation
of the order ofO(d t

2). With this approximation, Eq.~8! be-
comes

f ~x1jd t ,j,t1d t!2 f ~x,j,t !

5~e2d t /l21!@ f ~x,j,t !2g~x,j,t !#

1S 11
l

d t
~e2d t /l21! D

3@g~x1jd t ,j,t1d t!2g~x,j,t !#. ~10!

If we expande2d t /l in its Taylor expansion and, further
neglect the terms of orderO(d t

2) or smaller on the right-hand
side of Eq.~10!, then Eq.~10! becomes

f ~x1jd t ,j,t1d t!2 f ~x,j,t !52
1

t
@ f ~x,j,t !2g~x,j,t !#,

~11!

wheret[l/d t is the dimensionless relaxation time~in the
unit of d t!. Therefore, Eq.~11! is accurate to the first order in
d t . Equation~11! is the evolution equation of the distribu
tion function f with discrete time.

Althoughg is written as an explicit function oft, the time
dependence ofg lies solely in the hydrodynamic variablesr,
u, and T ~the Chapman-Enskog ansatz@16#!, that is,
g(x,j,t)5g(x,j;r,u,T). Therefore, one must first comput
r, u, andT before constructing the equilibrium distributio
function,g. Thus, the calculation ofr, u, andT becomes one
of the most crucial steps in discretizing the Boltzmann eq
tion.

B. Calculation of the hydrodynamic moments

In order to numerically evaluate the hydrodynamic m
ments of Eq.~3!, appropriate discretization in momentu
spacej must be accomplished. With appropriate discretiz
tion, integration in momentum space~with weight function
g! can be approximated by quadrature up to a certain de
of accuracy, that is,
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E c~j!g~x,j,t !dj5(
a

Wac~ja!g~x,ja ,t !, ~12!

wherec~j! is a polynomial ofj, Wa is the weight coefficient
of the quadrature, andja is the discrete velocity set or th
abscissas of the quadrature. Accordingly, the hydrodyna
moments of Eqs.~3! can be computed by

r5(
a

f a5(
a

ga , ~13a!

ru5(
a

ja f a5(
a

jaga , ~13b!

r«5
1

2 (
a

~ja2u!2f a5
1

2 (
a

~ja2u!2ga , ~13c!

where

f a[ f a~x,t ![Wa f ~x,ja ,t !, ~14a!

ga[ga~x,t ![Wag~x,ja ,t !. ~14b!

It should also be noted thatf a ~or ga) has the unit off dj ~or
gdj).

III. DERIVATION OF THE LATTICE BOLTZMANN
EQUATION AND ITS EQUILIBRIUM DISTRIBUTION

FUNCTION

The lattice Boltzmann equation has the following ingre
ents:~1! an evolution equation, in the form of Eq.~11! with
discretized time and phase space of which configura
space is of a lattice structure and momentum space is
duced to a small set of discrete momenta;~2! conservation
constraints in the form of Eq.~13!; ~3! a proper equilibrium
distribution function which leads to the Navier-Stokes eq
tions. In what follows, the low Mach number expansion
first applied to the Boltzmann-Maxwellian distribution fun
tion. Then quadrature to approximate the integration in
momentum spacej is discussed in detail for a variety o
LBE models in both 2D and 3D space. Through the quad
ture, the lattice structure, and the equilibrium distributi
function of the LBE are constructed.

A. Low-Mach-number approximation

In the lattice Boltzmann equation, the equilibrium dist
bution function is obtained by a truncated small velocity e
pansion ~or low-Mach-number approximation! @14#. The
same can be done here:

g5
r

~2pRT!D/2 exp~2j2/2RT!exp$~j•u!/RT2u2/2RT%

5
r

~2pRT!D/2 exp~2j2/2RT!

3H 11
~j•u!

RT
1

~j•u!2

2~RT!22
u2

2RTJ 1O~u3!. ~15!
ic

-

n
e-

-

e

-

-

With the equilibrium distribution functiong of the above
form, Eq. ~11! bears a strong resemblance to the latt
Boltzmann equation, and what remains to be accomplishe
the discretization of phase space. For convenience, the
lowing notation for the equilibrium distribution function with
truncated small velocity expansion shall be used in what
lows:

f ~eq!5
r

~2pRT!D/2 exp~2j2/2RT!

3H 11
~j•u!

RT
1

~j•u!2

2~RT!22
u2

2RTJ . ~16!

Although f (eq) only retains the terms up toO(u2), it is trivial
to maintain high-order terms ofu in the above expansion i
necessary.

B. Discretization of phase space

There are two considerations in the discretization of ph
space. First of all, the discretization of momentum space
coupled to that of configuration space such that a lat
structure is obtained. This is a special characteristic of
lattice Boltzmann equation. Second, the quadrature mus
accurate enough so that not only the conservation constra
of Eq. ~13! are preserved exactly, but also the necessary s
metries required by the Navier-Stokes equations are retai

In deriving the Navier-Stokes equations from the Bol
mann equation via the Chapman-Enskog analysis@16,17#,
the first two order approximations of the distribution fun
tion ~i.e., f (eq) and f (1)! must be considered. Therefore, give
the equilibrium distribution function,f (eq) of Eq. ~16!, the
quadrature used to evaluate the hydrodynamic moments m
be able to compute the following moments with respect
f (eq) exactly:

r: 1,j i , j ij j , ~17a!

u: j i , j ij j , j ij jjk , ~17b!

T: j ij j , j ij jjk , j ij jjkj l , ~17c!

wherej i is the component ofj in Cartesian coordinates.~We
have assumed that the particle only has the linear degre
freedom, i.e.,D05D.! Thus, to obtain the Navier-Stoke
equations, one must be able to evaluate the moments o
j,...,j6 with respect to weight function exp(2j2/2RT) ex-
actly, owing to the smallu expansion ofg. For isothermal
models, which are discussed in what follows, the mome
that are to be evaluated are 1,j,...,j5.

Calculating the hydrodynamic moments off (eq) is equiva-
lent to evaluating the following integral in general:

I 5E c~j! f ~eq!dj5
r

~2pRT!D/2 E c~j!exp~2j2/2RT!

3H 11
~j•u!

RT
1

~j•u!2

2~RT!22
u2

2RTJ dj, ~18!

wherec~j! is a polynomial ofj. The above integral has th
following structure:
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E e2x2
c~x!dx,

which can be calculated numerically with Gaussian-ty
quadrature@35#. Our objective is to use quadrature to eva
ate the hydrodynamic moments@r, u, andT, given by Eq.
~3!#. Given proper discretization of phase space, we
evaluate the above integral with desirable accuracy. In
meantime, the lattice Boltzmann equation with appropri
equilibrium distribution function can also be derived.

IV. LATTICE BOLTZMANN MODELS IN TWO-
AND THREE-DIMENSIONAL SPACE

A. Two-dimensional 6-bit and 7-bit triangular lattice model

The 7-bit model is constructed on a two-dimensionalD
52) triangular lattice space. The triangular lattice has
necessary rotational symmetry required by the hydrodyn
ics @14#. The polar coordinates ofj space,~j, u!, are used
here. For the sake of simplicity but without losing generali
assuming

cm,n~j!5~A2RT!m1nzm1n cosmu sinnu, ~19!

wherez5j/A2RT, the integral in Eq.~18! becomes
n

th

h
e

e

e
-

n
e
e

e
-

,

I 5E cm,n~j! f ~eq!dj

5
r

p
~A2RT!m1nE

0

2pE
0

`

e2z2
zm1n cosmu sinnu

3H 11
2z~ ê•u!

A2RT
1

z2~ ê•u!2

RT
2

u2

2RTJ duzdz, ~20!

whereê5(cosu, sinu). To obtain the 7-bit lattice Boltzmann
equation on the triangular lattice space, the angular varia
u must be discretized evenly into six sections in the inter
@0, 2p!, that is,ua5(a21)p/3, for a5$1,2,...,6%. With the
discretization ofu, we have

E
0

2p

cosmu sinnudu

5H p

3 (
a51

6

cosmua sinnua , ~m1n! even

0, ~m1n! odd

~21!

for (m1n)<5. Using the above result, we obtain
I 55
r

3
~A2RT!m1n (

a51

6

cosmua sinnuaH S 12
u2

2RTD I m1n1
~ êa•u!2

RT
I m1n12J , ~m1n! even

r

3
~A2RT!m1n (

a51

6

cosmua sinnua

2~ êa•u!

A2RT
I m1n11 , ~m1n! odd,

~22!
be
whereêa5(cosua , sinua), and

I m5E
0

1`

~ze2z2
!zmdz ~23!

is the mth moment with respect to the weight functio
ze2z2

.
Since the 7-bit model only has two speeds~i.e.,n52! and

one of them is fixed at 0, it is clear that the abscissas of
quadrature to evaluateI m should bez050 and z15g21,
where g is a positive parameter to be adjusted later. T
Radau-Gauss formula@35# is a natural choice to evaluate th
integral I m :

I m5v0z0
m1(

j 51

n

v jz j
m .

For the 7-bit model,n51, and the integrals needed to b
evaluated areI 0 , I 2 , andI 4 . @I 1 andI 3 do not play any role
because of the symmetry of the integralI , as shown in Eq.
~22!.# Then, we have the following three equations:

I 05v01v151/2, ~24a!
e

e

I 25v1g2251/2, ~24b!

I 45v1g2451, ~24c!

of which, the solutions are

v051/4, ~25a!

v151/4, ~25b!

g51/&. ~25c!

Therefore, we have

I m5 1
4 ~z0

m1z1
m!, m50,2,4. ~26!

Note that the above quadrature forI m is exactfor m50, 2,
and 4. Consequently, the following equality is expected to
exact for (m1n)<5:
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I 5
r

12
~A2RT!m1n (

a51

6

cosmua sinnuaH S 12
u2

2RTD
3~z0

m1n1z1
m1n!1

2~ êa•u!

A2RT
~z0

m1n111z1
m1n11!

1
~ êa•u!2

RT
~z0

m1n121z1
m1n12!J

5
r

2
cm,n~j0!H 12

u2

2RTJ 1
r

12 (
a51

6

cm,n~ja!

3H 11
~ja•u!

RT
1

~ja•u!2

2~RT!22
u2

2RTJ ,

whereij0i5A2RTz050 andja5A2RTz1êa52ARTêa . It
becomes obvious that the equilibrium distribution functi
for the 7-bit model is

f a
~eq!5warH 11

4~ea•u!

c2 1
8~ea•u!2

c4 2
2u2

c2 J , ~27!

whereaP$0,1,2,...,6%,

c5
dx

d t
~28!

is ‘‘the speed of light’’ in the system~which is usually set to
be unity in the literature!,

ea5H ~0, 0!, a50

~cosua , sinua!c, ua5~a21!p/3, a51,2,...,6
~29!

and

wa5H 1/2, a50

1/12, a51,2,...,6.
~30!

Note that the substitution ofRT5cs
25c2/4, wherecs is the

sound speed of the system, has been made in Eq.~27!, and
RT5cs

25c2/4 is equivalent toijai5c for aÞ0. The coef-
ficient Wa defined in Eq.~14! is explicitly given by

Wa5~2pRT!D/2eja
2 /2RTwa . ~31!

Similarly, the equilibrium distribution function for the 6
bit LBE model, which is a degenerate case of the 7-
model, can be obtained easily by solving two equations
one abscissa and the weight coefficient of the Hermite-Ga
formula @35# with modification for the integral on half rea
axis @36#. The solutions arev15 1

2 andg51. Then, we have

f a
~eq!5

r

6 H 11
2~ea•u!

c2 1
4~ea•u!2

c4 2
u2

c2J , ~32!

where aP$1,2,...,6%. The sound speed of the 6-bit LB
model iscs5c/&, andwa5 1

6 .
it
r
ss

B. Two-dimensional 9-bit square lattice model

To recover the 9-bit LBE model on square lattice spa
the Cartesian coordinate system is used and, accordin
c~j! can be set to

cm,n~j!5jx
mjy

n ,

where jx and jy are thex and y components ofj. The
integral of the moments, defined by Eq.~18!, becomes

I 5E cm,n~j! f ~eq!dj5
r

p
~A2RT!m1nH S 12

u2

2RTD I mI n

1
2~uxI m11I n1uyI mI n11!

A2RT

1
ux

2I m12I n12uxuyI m11I n111uy
2I mI n12

RT J , ~33!

where

I m5E
2`

1`

e2z2
zmdz, z5j/A2RT

is themth order moment of the weight functione2z2
on the

real axis. Naturally, the third-order Hermite formula@35# is
the optimal choice to evaluateI m for the purpose of deriving
the 9-bit LBE model:

I m5(
j 51

3

v jz j
m .

The three abscissas of the quadrature are

z152A3/2, z250, z35A3/2, ~34!

and the corresponding weight coefficients are

v15Ap/6, v252Ap/3, v35Ap/6. ~35!

Then, the integral of the moment in Eq.~33! becomes

I 5
r

p (
i , j 51

3

v iv jc~ji , j !H 11
~ji , j•u!

RT
1

~ji , j•u!2

2~RT!2 2
u2

2RTJ ,

~36!

where ji , j5(j i , j j )5A2RT(z i , z j ). Obviously, we can
identify the equilibrium distribution function with

f i , j
~eq!5

v iv j

p
rH 11

~ji , j•u!

RT
1

~ji , j•u!2

2~RT!2 2
u2

2RTJ . ~37!

Employing the notations of
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ea5H ~0, 0!, a50

~cosua , sinua!c, ua5~a21!p/2, a51,2,3,4

&~cosua , sinua!c, ua5~a25!p/21p/4, a55,6,7,8

~38!
n

a
is-

me.
and

wa5
v iv j

p
5H 4/9, i 5 j 52, a50

1/9, i 51, j 52, . . . , a51,2,3,4

1/36, i 5 j 51, . . . , a55,6,7,8,
~39!

and with the substitution ofRT5cs
25c2/3 ~or iA2RTz1i

5A3RT5c!, we obtain the equilibrium distribution functio
of the 9-bit LBE model:

f a
~eq!5warH 11

3~ea•u!

c2 1
9~ea•u!2

2c4 2
3u2

2c2J . ~40!
it

as
ffi
is
el

d
n

C. Three-dimensional 27-bit square lattice model

The 27-bit LBE model in 3D square lattice space is
straightforward extension of the 2D 9-bit model. The absc
sasj i , as well as the corresponding weight coefficientsv i ,
of the quadrature to evaluate the moments remain the sa
Therefore,

I 5
r

p3/2 (
i , j ,k51

3

v iv jvkc~ji , j ,k!

3H 11
~ji , j ,k•u!

RT
1

~ji , j ,k•u!2

2~RT!2 2
u2

2RTJ , ~41!

where ji , j ,k5(j i ,j j ,jk)5A2RT(z i ,z j ,zk). With the fol-
lowing notations similar to the 9-bit model,
ea55
~0,0,0!, a50

~61,0,0!c, ~0,61,0!c, ~0,0,61!c, a51,2,...,6

~61,61,0!c, ~61,0,61!c, ~0,61,61!c, a57,8,...,18

~61,61,61!c, a519,20,...,26

~42!
n

q.
ity
-
on,
ck

els
n-
ctly
nn

ua-
rig-
d to
n.
be

hip
gas

r.
and

wa5
v iv jvk

p3/2

55
8/27, i 5 j 5k52, a50

2/27, i 5 j 52, k51, . . . , a51,2,...,6

1/54, i 5 j 51, k52, . . . , a57,8,...,18

1/216, i 5 j 5k51, . . . , a519,20,...,26,

~43!

we obtain the equilibrium distribution function of the 27-b
LBE model:

f a
~eq!5warH 11

3~ea•u!

c2 1
9~ea•u!2

2c4 2
3u2

2c2J . ~44!

Note that thef a
(eq) of the 27-bit model is exactly the same

that of the 9-bit model except for the values of the coe
cients wa . Also, the sound speed of the 27-bit model
identical to that of the 9-bit model because in both mod
RT5cs

25c2/3.

V. CONCLUSION

Recently, a number of gas kinetic methods have been
veloped for solving Navier-Stokes equations of simple a
-

s

e-
d

complex fluids@27–33#. All these methods are based upo
the solution of the BGK equation~1!. In particular, these gas
kinetic methods are basically a finite-volume solution of E
~8! and they do not require discretization of the veloc
spacej. While the lattice Boltzmann equation is in the in
compressible limit due to the small-Mach-number expansi
the gas kinetic methods are particularly suitable for sho
capture.

In conclusion, we have derived lattice Boltzmann mod
from the Boltzmann BGK equation, which is completely i
dependent of lattice-gas automata. The derivation dire
connects the lattice Boltzmann equation to the Boltzma
equation; thus, the framework of the lattice Boltzmann eq
tion can rest on that of the Boltzmann equation and the
orous results of the Boltzmann equation can be extende
the lattice Boltzmann equation via this explicit connectio
Insight to improve the previous LBE models can also
gained from the results obtained in this paper@24–26#. Fur-
thermore, the analysis here also points out the relations
between the LBE method and other newly developed
kinetic methods@27–33#.
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